Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEBS J ; 291(4): 690-704, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37942667

RESUMEN

Diacylglycerol kinases (DGKs) control local and temporal amounts of diacylglycerol (DAG) and phosphatidic acid (PA) by converting DAG to PA through phosphorylation in cells. Certain DGK enzymes possess C-terminal sequences that encode potential PDZ-binding motifs (PBMs), which could be involved in their recruitment into supramolecular signaling complexes. In this study, we used two different interactomic approaches, quantitative native holdup (nHU) and qualitative affinity purification (AP), both coupled to mass spectrometry (MS) to investigate the PDZ partners associated with the potential PBMs of DGKs. Complementing these results with site-specific affinity interactomic data measured on isolated PDZ domain fragments and PBM motifs, as well as evolutionary conservation analysis of the PBMs of DGKs, we explored functional differences within different DGK groups. All our results indicate that putative PBM sequences of type II enzymes, namely DGKδ, DGKη, and DGKκ, are likely to be nonfunctional. In contrast, type IV enzymes, namely DGKζ and DGKι, possess highly promiscuous PBMs that interact with a set of PDZ proteins with very similar affinity interactomes. The combination of various interactomic assays and evolutionary analyses provides a useful strategy for identifying functional domains and motifs within diverse enzyme families.


Asunto(s)
Diacilglicerol Quinasa , Diglicéridos , Diacilglicerol Quinasa/genética , Diglicéridos/metabolismo , Transducción de Señal , Fosforilación
2.
EMBO Mol Med ; 14(5): e14649, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35373916

RESUMEN

Fragile X syndrome (FXS) is the most frequent form of familial intellectual disability. FXS results from the lack of the RNA-binding protein FMRP and is associated with the deregulation of signaling pathways downstream of mGluRI receptors and upstream of mRNA translation. We previously found that diacylglycerol kinase kappa (DGKk), a main mRNA target of FMRP in cortical neurons and a master regulator of lipid signaling, is downregulated in the absence of FMRP in the brain of Fmr1-KO mouse model. Here we show that adeno-associated viral vector delivery of a modified and FMRP-independent form of DGKk corrects abnormal cerebral diacylglycerol/phosphatidic acid homeostasis and FXS-relevant behavioral phenotypes in the Fmr1-KO mouse. Our data suggest that DGKk is an important factor in FXS pathogenesis and provide preclinical proof of concept that its replacement could be a viable therapeutic strategy in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/terapia , Ratones , Ratones Noqueados
3.
EMBO J ; 39(20): e104467, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32706158

RESUMEN

Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule-containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.


Asunto(s)
Núcleo Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Acrilatos/farmacología , Animales , Línea Celular , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Regulación hacia Abajo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Hibridación Fluorescente in Situ , Interfase/genética , Ratones , Microscopía Electrónica de Transmisión , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética
4.
Nat Commun ; 10(1): 3465, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371714

RESUMEN

Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns. 17% of human unique orthologues of mouse NAP genes are known loci for cognitive dysfunction. The remaining 83% constitute a vast pool of genes newly implicated in brain architecture, providing the largest study of mouse NAP genes and pathways. This offers a complementary resource to human genetic studies and predict that many more genes could be involved in mammalian brain morphogenesis.


Asunto(s)
Encéfalo , Estudios de Asociación Genética , Morfogénesis/genética , Neuroanatomía , Neurogénesis/genética , Animales , Encéfalo/metabolismo , Ciclo Celular , Cognición , Citoesqueleto , Redes Reguladoras de Genes , Genes Letales/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Mutación , Fenotipo , Sinapsis
5.
Front Cell Neurosci ; 13: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30728767

RESUMEN

Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate specific proteins in restricted compartments and within those only at defined submembrane areas. Furthermore, with its cone-shaped geometry PA locally changes membrane topology and may thus be a key player in membrane trafficking events, especially in membrane fusion and fission steps, where lipid remodeling is believed to be crucial. These pleiotropic cellular functions of PA, including phospholipid synthesis and homeostasis together with important signaling activity, imply that perturbations of PA metabolism could lead to serious pathological conditions. In this mini-review article, after outlining the main cellular functions of PA, we highlight the different neurological diseases that could, at least in part, be attributed to an alteration in PA synthesis and/or catabolism.

6.
Adv Biol Regul ; 71: 194-205, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30262213

RESUMEN

Fine-tuned regulation of new proteins synthesis is key to the fast adaptation of cells to their changing environment and their response to external cues. Protein synthesis regulation is particularly refined and important in the case of highly polarized cells like neurons where translation occurs in the subcellular dendritic compartment to produce long-lasting changes that enable the formation, strengthening and weakening of inter-neuronal connection, constituting synaptic plasticity. The changes in local synaptic proteome of neurons underlie several aspects of synaptic plasticity and new protein synthesis is necessary for long-term memory formation. Details of how neuronal translation is locally controlled only start to be unraveled. A generally accepted view is that mRNAs are transported in a repressed state and are translated locally upon externally cued triggering signaling cascades that derepress or activate translation machinery at specific sites. Some important yet poorly considered intermediates in these cascades of events are signaling lipids such as diacylglycerol and its balancing partner phosphatidic acid. A link between these signaling lipids and the most common inherited cause of intellectual disability, Fragile X syndrome, is emphasizing the important role of these secondary messages in synaptically controlled translation.


Asunto(s)
Diglicéridos/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Ácidos Fosfatidicos/metabolismo , Biosíntesis de Proteínas , Transducción de Señal , Sinapsis/metabolismo , Animales , Diglicéridos/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Humanos , Plasticidad Neuronal , Neuronas/patología , Ácidos Fosfatidicos/genética , Sinapsis/genética , Sinapsis/patología
7.
Nat Rev Dis Primers ; 3: 17065, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28960184

RESUMEN

Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.


Asunto(s)
Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/terapia , Humanos
9.
Biochimie ; 130: 188-194, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27597551

RESUMEN

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism. FXS results from the absence of FMRP, an RNA binding protein associated to ribosomes that influences the translation of specific mRNAs in post-synaptic compartments of neurons. The main molecular consequence of the absence of FMRP is an excessive translation of neuronal protein in several areas of the brain. This local protein synthesis deregulation is proposed to underlie the defect in synaptic plasticity responsible for FXS. Recent findings in neurons of the fragile X mouse model (Fmr1-KO) uncovered another consequence of the lack of FMRP: a deregulation of the diacylglycerol (DAG)/phosphatidic acid (PA) homeostasis. DAG and PA are two interconvertible lipids that influence membrane architecture and that act as essential signaling molecules that activate various downstream effectors, including master regulators of local protein synthesis and actin polymerization. As a consequence, DAG and PA govern a variety of cellular processes, including cell proliferation, vesicle/membrane trafficking and cytoskeletal organization. At the synapse, the level of these lipids is proposed to influence the synaptic activation status. FMRP appears as a master regulator of this neuronal process by controlling the translation of a diacylglycerol kinase enzyme that converts DAG into PA. The deregulated levels of DAG and PA caused by the absence of FMRP could represent a novel therapeutic target for the treatment of FXS.


Asunto(s)
Diglicéridos/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Lípidos/análisis , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones Noqueados
10.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27233938

RESUMEN

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/enzimología , Anciano , Animales , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Diacilglicerol Quinasa/genética , Diglicéridos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neuronas/metabolismo , Transducción de Señal
11.
Nucleic Acids Res ; 43(17): 8540-50, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26250109

RESUMEN

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.


Asunto(s)
Cerebelo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/química
12.
PLoS Genet ; 9(3): e1003367, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555284

RESUMEN

The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA-binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21--a regulator of cell-cycle progression--in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3' untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Distrofias Musculares , Mioblastos , Proteínas de Unión al ARN/genética , Animales , Ciclo Celular/genética , Diferenciación Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
13.
Cell Rep ; 3(3): 869-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23478018

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55-200 CGG repeats in the 5' UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.


Asunto(s)
Ataxia/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Temblor/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Ataxia/genética , Encéfalo/metabolismo , Muerte Celular , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Unión Proteica , Proteínas/genética , Proteínas de Unión al ARN , Ribonucleasa III/genética , Transcripción Genética , Temblor/genética
14.
Wiley Interdiscip Rev RNA ; 3(4): 495-507, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22488917

RESUMEN

G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.


Asunto(s)
G-Cuádruplex , ARN/metabolismo , Humanos , Poliadenilación , ARN/química , Empalme del ARN , Telómero/metabolismo , Transcripción Genética
15.
EMBO Rep ; 12(7): 697-704, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21566646

RESUMEN

Targeting of messenger RNAs (mRNAs) in neuron processes relies on cis-acting regulatory elements, the nature of which is poorly understood. Here, we report that approximately 30% of the best-known dendritic mRNAs contain a guanine (G)-quadruplex consensus in their 3'-untranslated region. Among these mRNAs, we show by using RNA structure probing that a G-quadruplex is present in the mRNAs of two key postsynaptic proteins: PSD-95 and CaMKIIa. The G-quadruplex structure is necessary and sufficient for the potent and fast localization of mRNAs in cortical neurites and this occurs in a metabotropic glutamate receptor-responsive manner. Thus, G-quadruplex seems to be a common neurite localization signal.


Asunto(s)
G-Cuádruplex , Neuritas/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Secuencia de Bases , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Homólogo 4 de la Proteína Discs Large , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Transporte de ARN
16.
Neurobiol Dis ; 35(2): 241-50, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19464371

RESUMEN

Fragile X syndrome is caused by lack of the protein FMRP. FMRP mediates mRNA binding, dendritic mRNA transport and translational control at spines. We examined the role of functional domains of FMRP in neuronal RNA-granule formation and dendritic transport using different FMRP variants, including the mutant FMRP_I304N and the splice-variant FMRP_Iso12. Both variants are absent from dendritic RNA-granules in Fmr1 knockout neurons. Co-transfection experiments showed that wild-type FMRP recruits both FMRP variants into dendritic RNA-granules. Co-transfection of FXR2, an FMRP homologue, also resulted in redistribution of both variants into dendritic RNA-granules. Furthermore, the capacity of the variants to transport their mRNAs and the mRNA localization of an FMR1 construct containing silent point-mutations affecting only the G-quartet-structure were investigated. In conclusion, we show that wild-type FMRP and FXR2P are able to recruit FMRP variants into RNA-granules and that the G-quartet-structure in FMR1 mRNA is not essential for its incorporation in RNA-granules.


Asunto(s)
Dendritas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transporte de ARN , Animales , Células Cultivadas , Dendritas/ultraestructura , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Hipocampo/citología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Confocal , Mutación , Neuronas/citología , Conformación de Ácido Nucleico , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transfección
17.
PLoS Biol ; 7(1): e16, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19166269

RESUMEN

Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the "kissing complex," which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Animales , Sitios de Unión , Encéfalo/enzimología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Ratones Mutantes , Polirribosomas , Biosíntesis de Proteínas , ARN Mensajero/química , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
18.
Mol Biol Cell ; 20(1): 428-37, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19005212

RESUMEN

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in the mRNA metabolism. The absence of FMRP in neurons leads to alterations of the synaptic plasticity, probably as a result of translation regulation defects. The exact molecular mechanisms by which FMRP plays a role in translation regulation have remained elusive. The finding of an interaction between FMRP and the RNA interference silencing complex (RISC), a master of translation regulation, has suggested that both regulators could be functionally linked. We investigated here this link, and we show that FMRP exhibits little overlap both physically and functionally with the RISC machinery, excluding a direct impact of FMRP on RISC function. Our data indicate that FMRP and RISC are associated to distinct pools of mRNAs. FMRP, unlike RISC machinery, associates with the pool of mRNAs that eventually goes into stress granules upon cellular stress. Furthermore, we show that FMRP plays a positive role in this process as the lack of FMRP or a point mutant causing a severe fragile X alter stress granule formation. Our data support the proposal that FMRP plays a role in controlling the fate of mRNAs after translation arrest.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Mutación Puntual , Embarazo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Estrés Fisiológico
19.
Nucleic Acids Res ; 36(15): 4902-12, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18653529

RESUMEN

The fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established. In this work, we characterized the FMRP binding site (FBS) within the FMR1 mRNA by a site directed mutagenesis approach and we investigated its importance for FMR1 expression. We show that the FBS in the FMR1 mRNA adopts two alternative G-quartet structures to which FMRP can equally bind. While FMRP binding to mRNAs is generally proposed to induce translational regulation, we found that mutations in the FMR1 mRNA suppressing binding to FMRP do not affect its translation in cellular models. We show instead that the FBS is a potent exonic splicing enhancer in a minigene system. Furthermore, FMR1 alternative splicing is affected by the intracellular level of FMRP. These data suggest that the G-quartet motif present in the FMR1 mRNA can act as a control element of its alternative splicing in a negative autoregulatory loop.


Asunto(s)
Empalme Alternativo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , G-Cuádruplex , ARN Mensajero/química , Secuencias Reguladoras de Ácido Ribonucleico , Adenina/química , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Exones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Células PC12 , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas
20.
J Biol Chem ; 283(9): 5598-610, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18093976

RESUMEN

Spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein. Although the SMN complex is essential for assembly of spliceosomal U small nuclear RNPs, it is still not understood why reduced levels of the SMN protein specifically cause motor neuron degeneration. SMN was recently proposed to have specific functions in mRNA transport and translation regulation in neuronal processes. The defective protein in Fragile X mental retardation syndrome (FMRP) also plays a role in transport of mRNPs and in their translation. Therefore, we examined possible relationships of SMN with FMRP. We observed granules containing both transiently expressed red fluorescent protein(RFP)-tagged SMN and green fluorescent protein(GFP)-tagged FMRP in cell bodies and processes of rat primary neurons of hypothalamus in culture. By immunoprecipitation experiments, we detected an association of FMRP with the SMN complex in human neuroblastoma SH-SY5Y cells and in murine motor neuron MN-1 cells. Then, by in vitro experiments, we demonstrated that the SMN protein is essential for this association. We showed that the COOH-terminal region of FMRP, as well as the conserved YG box and the region encoded by exon 7 of SMN, are required for the interaction. Our findings suggest a link between the SMN complex and FMRP in neuronal cells.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipotálamo/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Exones/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Humanos , Hipotálamo/patología , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína/fisiología , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA